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Abstract

We consider an inverse radiation problem of determining the time-varying strength of a heat source, which mimics
flames in a furnace, from temperature measurements in three-dimensional participating media where radiation and
conduction occur simultaneously. The inverse radiation problem is posed as a minimization problem of the least-
squares criterion, which is solved by a conjugate gradient method employing the adjoint equation to determine the
descent direction. The discrete ordinate S, method (M.F. Modest, Radiative Heat Transfer, McGraw-Hill, New York,
1993) is employed to solve the radiative transfer equation and its adjoint equation accurately. The performance of the
present technique of inverse analysis is evaluated by several numerical experiments, and it is found to solve the inverse
radiation problem accurately without a priori information about the unknown function to be estimated. © 2001

Elsevier Science Ltd. All rights reserved.

1. Introduction

In the present investigation, we consider a method of
determining the time-varying strength of a heat source in
radiatively participating media from the temperature
measurements in the domain. The heat source in the
present case may be thought of as a model of flames in a
furnace where the major mechanism of heat transfer is
radiation. The radiative heat transfer in furnaces is a
very complicated phenomenon as tiny suspending par-
ticles scatter, absorb and emit radiation. The governing
equation for this process is given as an integro-differ-
ential equation in a phase space, called the radiative
transfer equation [1,2]. Since the radiation affects the
temperature field, the actual mode of heat transfer in
most cases is combined radiation and conduction or
convection. In the present work, we consider heat
transfer by combined conduction with radiation through
participating media capable of absorbing, emitting, and
scattering thermal radiation. In this case, it is necessary
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to solve an energy conservation equation that explicitly
provides the local temperature which determines the
blackbody intensity in the radiative transfer equation.
On the other hand, the divergence of the radiative flux
that is present as a source term in the energy conserva-
tion equation is obtained only after solving the radiative
transfer equation. Thus, the problems are always im-
plicit in temperature, and therefore require iterative
procedure which makes the modeling of these problems
challenging. Regarding the problem under consideration
in the present investigation, if the strength of the heat
source is known, one solves the energy conservation
equation with the heat source term and the radiative
transfer equation simultaneously to obtain the tem-
perature field in the domain. This is the direct problem.
Conversely, the strength of the heat source can be de-
termined with the help of extra conditions such as
temperature measurements at certain interior points of
the domain. Such a problem is one of the inverse prob-
lems and can be regarded as discovering the cause from
a known result. These inverse problems are ill-posed
in the sense that small perturbations in the observed
functions may result in large changes in the corre-
sponding solutions [3,4]. The ill-posed nature requires
special numerical techniques having regularization
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Nomenclature

Gy heat capacity

d"(t) conjugate direction

F performance function (Eq. (7))
G(#)  heat source function

I radiation intensity

L blackbody intensity (= 0,7 /7)
J adjoint radiation intensity

k thermal conductivity (W/m K)
MO number of measurement points
n unit inward normal vector

P adjoint temperature

q, radiative heat flux

s unit vector into a given direction
t time

te final time

T temperature

T* observed temperature

Greek symbols

o(x)  Dirac delta function

0,(x) function defined in Eq. (2)
OF variation of the performance function F
oG variation of the heat source function

ol variation of the radiation intensity

oT variation of the temperature field
emissivity

K absorption coefficient

0 optimal step length (Eq. (25))

a scattering coefficient

o} Stefan—Boltzmann constant, g, = 5.670 x 108
W/m? K*

Q" parameter defined in Eq. (18)
Q solid angle
VF  gradient of the performance function

Superscripts
* measured variable
T location of heat source

Subscripts
m measurement point
mCG modified conjugate gradient

properties to stabilize the results of calculations. Re-
cently the conjugate gradient methods have been em-
ployed in the solution of inverse heat conduction
problems [5,6], and found to be very efficient.

Contrary to the inverse heat conduction problems,
the inverse radiation problems have not been addressed
frequently [7]. We may mention two classes of inverse
radiation problems. One class is the determination of the
radiative parameters from various types of measure-
ments [8,9]. In Park and Yoon [9], they developed a
conjugate gradient method of solving three-dimensional
inverse radiation problems which allows one to estimate
the radiative parameters from the measurement of tem-
perature. Since the number of the unknown parameters is
finite in this case, the gradient of the performance func-
tion was conveniently obtained by employing the direct
differentiation method. The other class of the inverse
radiation problem is the determination of unknown
functions, e.g. the time-varying strength of a heat source
in the present investigation, from measurements in the
domain. Since the function determination is an infinite
dimensional problem in parameter space, the appropri-
ate method of obtaining the gradient of the performance
function is to adopt the adjoint equation [5]. In the pre-
sent investigation, the inverse radiation problem of esti-
mating the time-varying strength of a heat source is
posed as a minimization problem of the least-squares
criterion, which is solved by a conjugate gradient method
employing the adjoint equation to determine the descent
direction. The radiative transfer equation and its adjoint
are solved by the discrete ordinate S, method [1].

2. The system

We consider a rectangular furnace of size
(I m x 1 mx 1 m)(Fig. 1(a)) containing a participating
medium with opaque and diffusively reflecting bound-
aries. Heat transfer in this system is contributed by
conduction as well as radiation with absorption, scat-
tering and emission. The governing equation for the
temperature field is as follows:

or

pC _kvaivql+G(t)5n(x7xT)5n(y7yT)

Pt
X 511(272T)7 (1)

where p (= 0.4 kg/m?) is the density of the medium,
Cp, (=1100 J/kg K) is the heat capacity and
k (=44 W/m K) is the effective thermal conductivity.
In Eq. (1), G(¢) denotes the strength of heat source and
the function §,(x —x'), which approximates the heat
source at x = x', is defined by:

n

dulr 1) = 2cosh’(n(x —x1))

(2)

and becomes the Dirac delta function as n approaches
infinity. In the present work, we take n = 20 with the
heat source location (xf,yf,z") = (0.35,0.35,0.425). The
relevant boundary conditions for Eq. (1) are:

e at all boundaries; 7 = 800 K. (3)

The divergence of radiative heat flux V - ¢, in Eq. (1) is
determined by the following equation:
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Fig. 1. (a) The system with a heat source. (b) Typical temperature measurement points located along the center axis of the furnace (15

measurement points and 10 measurement points, respectively).
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V~q,.:4mc(@T4f—
i 4r J4,

I dQ), (4)

where « is the absorption coefficient, gy, is the Stefan-
Boltzmann constant, €2 is the solid angle and [ is the
radiation intensity. The governing equation of I for
participating media with absorption, emission and iso-
tropic scattering is:

V- () + (k + o) — Kkly — —

P /:
py 47tI(;,s)d.Q 0,

(5)

where § is a unit vector in the beam direction, ¢ the
scattering coefficient, I, is the Planck function (black-
body intensity). The relevant boundary conditions are:

I—e¢ .
|73
T 3 <0

where 7 is the inward normal vector into the cavity, §

the unit vector in the incoming beam direction and ¢ is

the wall emissivity. Egs. (1) and (5) are coupled through

the terms V - ¢, and I,, and must be solved iteratively to

yield the radiation and temperature fields. The compu-

tational procedure is as follows:

1. Assume the temperature field.

2. Calculate 7, using the given temperature field.

3. Solve the radiative transfer equation (Eq. (5)) using
the S; method [1] to obtain the radiation intensity 7.

4. The divergence of the radiative heat flux is deter-
mined by Eq. (4).

5. Solve Eq. (1) using a finite volume method to obtain
the temperature field.

e at the wall; I(r,3) = el, +

6. If the radiation and the temperature fields are not
converged, go to the step 2. Otherwise, move to the
next time step.

3. Solution of the inverse radiation problem using a
conjugate gradient method

The temperature field in the furnace varies according
to the heat source function G(¢). Therefore, G(¢) can be
estimated by using the measured values of temperature
field at certain locations. The performance function for
the identification of G(¢) is expressed by the sum of
square residuals between the calculated and observed
temperature as follows:

lMO

m=1

fr
/ (7o ims s ) — T sy 2, )],
0

()

where  T(Xu,Vm,Zm,¢) is the calculated temperature,
T*(Xps Yms Zm, t) the measured temperature at the same
location at the same time (X, Vi, Zm, ), and MO is the
total number of measurement points. To minimize the
performance function (7) using a conjugate gradient
method, we need the gradient of F, VF, defined by

SF(G) = F(G + 6G) — F(G) = (VF,5G)

"
= / VFSG dt, (8)
0

where f, the final time, is 1.0 s. If we take larger values
of #, it becomes easier to estimate G(¢), but the com-
puter time required for the estimation increases. The



2952 H.M. Park, D.H. Yoo | International Journal of Heat and Mass Transfer 44 (2001) 2949-2956

function VF can be obtained by introducing the adjoint
variables P(x t) and J(x, ) such that

i
2/ xmvymazmvt)i

m= 1

/ / { Gy ——kV2T+V~qr

o (x = x)8,(y — y1)d,(z — 21)] dx dt

///

_E [ 15 )dQ}dexdt )

T*(xmayrmzma t)}z dt

(x + o) — Kl

The variation of F, JF, is given by the following
equation:

4 MO
oF = / D 7o) = T o)

X 5T Xm7ym,2m7 ) de

/ / {pC ——széT
+4mc(—4r35T—i/ ol d.Q)
T 47 Jur

—8G(1)3,(x — xN8,(y — ¥, (z — ZT):| dx dt

///{ (361) + (1 + 0)3I

—k2oarsT - —/ ol dﬂ/} d€2 dx dr. (10)
n 4n J4

Integrating JF by parts both in space and time, and
exploiting the boundary conditions for 7 and I, the
gradient of F, VF, defined in Eq. (8) is found to be

VF = /P(x, 0)3,(x —x")3,(y —yNou(z =2 dx  (11)

X

while the governing equations for the adjoint variables
P(x,t) and J(x, ) are as follows
opP

or 2p b 3 b 3
pCog, + VP P(4mc)<n)(4T)+Kn_(4T)

MO
/JdQ+Z[T xmaynuzma )_ T*(xnﬂymvzm’t)]

m=1

x 8(x —xN)o(y — yNo(z — 1) =0, (12)
e 1=1t, P(xt)=0, (13)
e at all boundaries; P(x,t) =0, (14)
V-(SJ)f(K+a)J+%/mJdQ+KP:O, (15)
e at all boundaries; J(x,2) =0, (16)

where (x) in Eq. (12) is the Dirac delta function. Eq.
(12) is solved by using a finite volume method, and the
discrete ordinate S; method for the angular discretiza-
tion and the diamond-scheme for the spatial discretiza-
tion are adopted to solve Eq. (15). Once the gradient
function VF is obtained by using Eq. (11), the strength
of the heat source G(¢) can be estimated by employing
the following conjugate gradient procedure [5].

Step 1. Assume G(f).

Step 2. Define the scalar ¢:

o =0 if i=0, (17)
M

0 —
VF(GED)] dr

(i>1). (18)
Step 3. Define the conjugate direction d):

d® = VF(GY), (19)

dV = VF(GY) 4 Vd =V if i > 1. (20)

Step 4. Determine the optimal step length p) such
that

—F(GY — pd?) =0 for p=pl. (21)
Step 5. Set

GV(t) = GO (1) — pd(r). (22)
Step 6. If

G0 dt < e, stop (23)

[

Otherwise, set i =i+ 1, go to Step 2.

The optimal step length p in the Step 4 is obtained
by assuming quadratic variation of F with respect to p.
Denoting the directional derivative of T at G(¢) in the
direction of d(¢) by 67, we have

T(xm,ym,z,,,, I3 G([) - pd([))
— p(ST(Xm,ym,va t)' (24)

Substituting Eq. (24) into Eq. (7), partially differentiat-
ing it with respect to p and setting the resulting equation
equal to =zero, the value of p that minimizes
F(GY — pd®) is obtained as

t MO
o= [ YTzt
0 m=1

- T*(xmmymyznut)}éT(xnuyrmZmat) d[/

/ tt ZW X Yins 2y 1)) 1. (25)

The sensitivity equation which determines 67 (x, y, z, ¢) is
given by the following set of equations
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0T kst 4+ ame( arior — L / S dQ
ot Y 47 4n
7d(i)(t)én(x*Xj')én(y,y'r)én(zfﬂ) =0, (26)
e t=0, OT(x,y,z1) =0, (27)
e at all boundaries; 67T (x,y,z,¢) =0, (28)
V- 301 + (i + 0)o1 — e Z24T0T )
n
o
~n J, O 42 =0, (29)

. N L
e at all boundaries; 0/(r,$) = ¢ / |it-§ |
T Jay<o

x ol(r-§) d® (-5 > 0). (30)

Egs. (26) and (29) are solved by using the finite vol-
ume method [4] and the S; method, respectively.

4. Modified conjugate gradient method [10]

The conjugate gradient method described in the
previous section yields accurate profiles of the heat
strength G(¢) after sufficient number of iterations, except
its value at the final time G(¢). According to the starting
condition for the adjoint variable P, Eq. (13), we find
that the gradient function VF is zero at the final time (cf.
Eq. (11)). Therefore, the conjugate direction d(z) is also
zero at t = t; (cf. Egs. (19) and (20)), and according to
Eq. (22) the heat source function at the final time G(#)
remains at its initial guess G°(#). The difficulty en-
countered at the final time # can be alleviated by em-
ploying the following modification suggested by
Alifanov [10]. We seek a continuously differentiable
function G(¢) such that

~[1dG(Y)
- de

G(1) dr. (31)

From Egs. (8) and (11), the variation of the performance
function 0F may be rewritten as:

6F = ,/Otf /x P(x,0)8G(1)8,(x — x1)8,(y — »')
X 8,(z — 2') dx dr. (32)

Integrating Eq. (32) by parts with respect to ¢,

SF = _/ d‘SG(’)/ /P(x7t’)6n(x—x?)5n(y—ﬂ)
0 dr tp x
x 8,(z —z') dx df' dt. (33)

Therefore, the derivative of F with respect to dG/d¢ is
given by the following expression

w(fi_f) - / [ P03, = )00 =51
X 6,(z — 21) dx df dr. (34)

Then, we take the conjugate direction as follows:

t
d"(z) :/ DY) dr, (35)
0
where
. do\? o
D(’>=VF<E) + DD, (36)

Since d"(t), given by Eq. (35), is nonzero, the
modified conjugate gradient method yields an accurate
prediction of G(#) contrary to the previous regular
conjugate gradient method. On the other hand, from Eq.
(35) it can be seen that d(0) = 0. Then, for the same
reason with the regular conjugate gradient method, the
modified conjugate gradient method will not improve
the initial value of the heat source function G(0). In the
present investigation, this dilemma is overcome by
combining the regular and modified conjugate gradient
method sequentially. At the first stage, we employ the
modified conjugate gradient method for a certain num-
ber of iterations until a reasonably good estimation of
the end value G(#) is attained. Afterwards, the regular
conjugate gradient method is adopted using the esti-
mation of the modified conjugate gradient method as the
initial approximation until a converged profile is ob-
tained.

5. Results

The present method, which solves the inverse radia-
tion problem of estimating the time-varying strength of
a heat source in a furnace from temperature measure-
ments in the domain, has been tested using several sets
of simulated measurements T (X, Y, Zu, ), and the es-
timated strength of the heat source is compared with the
exact one. We consider two different cases of heat source
function G(¢), as depicted in Figs. 2(a) and (b). The
equations of G(¢) for the two cases shown in Fig. 2 are as
follows:

(a)  G(r) = 1600 (0<<0.044),
G(1) = 180,000f — 6320 (0.044 <¢<0.11),
G(1) = —180,000¢ + 33,280 (0.11 <7< 0.176),
G(1) = 1600 (0.176 <1< 0.22), (37)

(b)  G(f) = 1600 (0<¢<0.055),
G(1) = 20,000 (0.055<1<0.165),
G(1) = 1600 (0.165<1<0.22). (38)
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Fig. 2. Shapes of heat source function G(¢) considered in the present investigation.

For all tests presented in this section, the initial ap-
proximation of G(¢) in the conjugate gradient method is
taken to be 5000. (constant). The following definition of
estimation error is adopted to compare the quality of the
estimation.

|| Geslimaled - Gexacl le,z

Error = 5
| Gexacr I,

; (39)

where | - ||,, is the usual L,-norm. The simulated mea-
surements containing measurement errors are generated
by adding Gaussian distributed random errors to the
computed exact temperatures as follows

Tmeasured(: T*) = Toxact + ao, (40)

where ¢ determines the noise level and w is a random
number between —2.576 < w <2.576. In fact, o is the
standard deviation of measurement errors which are
assumed to be the same for all measurements, and o is
the Gaussian distributed random error. The above range
of the w value corresponds to the 99% confidence bound
for the temperature measurement. We adjust o such that
the relative measurement error is zero, 3% and 5%, re-
spectively.

As explained in Section 4, the regular conjugate
gradient method does not improve the final value G(#)
while the modified conjugate gradient method has the
same difficulty with the initial value G(0). The combined
iteration scheme [6] is employed to overcome this di-
lemma. At the first stage, we employ the modified con-
jugate gradient method for a certain number of
iterations until a reasonably good estimation of the final
value G(¢) is attained. Afterwards, the regular conjugate
gradient method is adopted using the estimation of the
modified conjugate gradient method as the initial ap-
proximation to get the final converged profile. The error

of G(#) with the modified conjugate gradient method is
defined by

X y
~ | G" (1) — G" (1) |
Eocg = E 41

T | G () | 4D

and the iteration of the modified conjugated gradient is
stopped when Ecg < 0.01.

As the first test, we consider an idealized situation in
which there are no measurement errors (¢ = 0). The
temperature measurements are assumed to be done
continuously by using 15 thermocouples located as
shown in Fig. 1(b). Figs. 3(a) and (b) show the estimated
profiles of the heat source function G(¢) for the two cases
of Fig. 2. The combined iteration scheme is employed to
obtain good estimations of both the initial and final
values of G(#). The iteration number of the modified
conjugate gradient method and that of the regular
conjugate gradient method are indicated as well as the
estimation error. The estimated profiles are in good
agreement with the exact heat source function over
the whole domain, with the estimation error being
5.328 x 1072 for the case (a) and 4.034 x 1072 for the
case (b). Fig. 4 shows the effect of the number of
measurement points on the accuracy of the estimated
heat source function. Instead of the 15 measurement
points depicted in Fig. 1(b), the 10 measurement points
are employed to obtain temperature recordings. Com-
paring the result of Fig. 4 with that of Fig. 3(a), we find
that the reduction of the number of measurement points
deteriorates the accuracy of the estimation, especially
near the initial time.

Finally, the effect of measurement errors on the ac-
curacy of the estimation is investigated. When there are
measurement errors, the following discrepancy principle
is adopted as the stopping criterion for the iterative
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Fig. 3. The estimated profiles of the heat source function G(¢) when the combined iteration scheme is employed. (a) Case (a) of Fig. 2.

(b) Case (b) of Fig. 2.
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. Exact
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Fig. 4. The estimated profile of G(¢) when the number of
measurement points is reduced to 10.

procedure of the conjugate gradient method [6]. As-
suming the measurement errors to be the same for all
thermocouples, i.e.

2.0x10* - -
Exact
measurementerror=3%  __-_- 50 iterations (modified conjugate)
69 iterations (regular conjugate)
1.5x10% - Error=3.99331x10° .
G(1)
1.0x10*
5.0x10°
0.0x10° |- i
L L Il L
0.05 010 0.15 0.20
(a) time(s)

T (X Vs Zmy ) — T (X Yo, Zmr 1) =2 0. (42)

Introducing this result into Eq. (7), we find

1 tr MO
in/o Zaz dr=¢. (43)
m=1

Then the discrepancy principle for the stopping cri-
terion is taken as

F < é. (44)

If the function F has a minimum value that is larger
than €, the following criterion is used to stop the iter-
ation

F(G"DY — F(GY) < ¢, (45)

where ¢ is a prescribed small number. Figs. 5(a) and (b)
show the estimated heat source function G(z) when the
relative measurement error is 3% (Fig. 5(a)) and 5%
(Fig. 5(b)), respectively. As expected, the accuracy of
estimation deteriorates as the measurement error

2.0x10* - -
Exact
measurement error=5%  _____ 66 iterations (modified conjugate)
80 iterations (regular conjugate)
1.5x10° |- Error=5.5758x10°? i
G(1)
1.0x10*
5.0x10°
0.0x10° |- B
1 L Il !
0.05 0.10 0.15 0.20
(b) time(s)

Fig. 5. The effect of measurement errors on the accuracy of estimation. (a) Relative measurement error=3%. (b) Relative

measurement error = 5%.
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increases. It is also shown that the estimated profiles of
G(¢) near the initial time are sensitive to measurement
errors. The reverse iteration procedure, where the reg-
ular conjugate gradient iteration is performed before the
modified conjugate gradient iteration, is tried to remedy
the error near the initial time, but it does not make any
difference.

6. Conclusion

The inverse radiation problem of estimating the un-
known strength of a time-varying heat source from the
temperature measurement within participating media
is investigated by employing the conjugate gradient
method. The gradient of the performance function is
obtained by using the adjoint equations. The radiative
transfer equation and its adjoint equation are solved by
means of the Sy method. The performance of the present
technique of inverse radiation problem is evaluated by
several numerical experiments, and it is found to solve
the inverse radiation problem accurately without a priori
information about the unknown function to be esti-
mated.
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